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CNNF F lassificati

Unsupervised feature learning for waveform classification

2 main concept:-
» Hierarchical Clustering

» Auto-encoder

These 2 methods falls under a category of unsupervised learning
within machine learning.

Specific labels are not given, the algorithm itself have to deduce
the label itself.



Hierarchical Clustering

The "distance” between each
ward linkage data is calculated. This

"distance” indicates how closely
the data are related to one and
another. This "distance”
between all data points are
calculated. Hierarchical
clustering can be best visualise
through a dendrogram where the
data are arranged and connected
in a tree like method. The height
of the tree represents the
"distance” between data points.
Data that have similar features
will tend to have shorter
"distance”.

Hierarchical Clustering

Agglomerative




"Distance” for Hierarchical clustering - Ward's Method

Ward's minimum variance method
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» The distance between two clusters, A and B
» The formula shows the merging cost in Ward's method.
P It is the increase of the sum of squares when merging A and B
How to determine the number of clusters?

This method does not tell us directly how many clusters is there.
In any clustering methods, the number of clusters is heuristic (ie:-
not optimal but sufficient). *my homework to do!



Input image

Deep Autoencoder

Encoding DBN Decoding DBN
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Reconstructed image

The information of the
data(waveform) is reduced
through the encoder
(4096—512). The size of the
data is reduced and the job of
the decoder is to reconstruct the
input of the encoder from the
reduced encoder output
(512—4096).
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Training the auto-encoder

Purpose: train the auto-encoder to reproduce the input and the
output to be as close as possible to the input.
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* The waveform are normalized before being fed into the
auto-encoder.



Taking the encoder of the auto encoder and do

hierarchical clustering on it
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The features of waveform (low level
parameter) is reduced to few
parameters (high level
parameters/engineered features).

These high level features are similar
to the reconstructed parameters that
we obtain through x?/gradient/etc
with the difference that the
algorithm learn to create their own
unique parameters.

Hierarchical clustering on these high
level features where waveform with
similar features can be grouped
together (visualise through
dendrogram.)



Testing Algorithm to differentiate o and 3/~
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The tested data is made up by
combining the dataset used to
make the « list and 3/~
reference pulse.

Only 4096 channels of waveform
is fed into the trained encoder.

The algorithm managed to
identified the 2 type of waveform
at 2 clusters level.

Overall, 96.99% accurately
identified

B/v, 95.63% correctly identified
a, 97.38% correctly identified



Adding LS reference pulse list into the mix

0

tested again to identify 3
different type of waveform.

(3type of single pulse, Is, 3/~
and «)

Overall, 98.92% accurately
identified

LS, 100% correctly identify
B/, 96.84% correctly identified
a, 96.57% correctly identified



Testing on dataset from Run009

Dataset:- obtained via cut
condition, PSDPara[1]<1.5, dual ~The dataset can be grouped into
gate trigger, good data quality, 9 clusters(heuristic).

Energy>3000keV

Cluster# | no. of events

Total number of events in the 1 2552

dataset: 5145 events 640
: 71
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Dataset from Run009 - Examine the clusters - 1,2

Averaged waveform of cluster#1 Averaged waveform of cluster#2
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Averaged waveform of cluster#3
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randomly sampled from cluster#3

Averaged waveform of cluster#4
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Averaged waveform of cluster#5
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Averaged waveform of cluster#6
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Averaged waveform of cluster#7
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Averaged waveform of cluster#8
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Averaged waveform of cluster#9
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Cluster#2 in detail - 640 events

Cluster#2, double pulse within ~ 0.1us?
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Comparing with cluster#1,
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The minimum gap to classify
double pulse? It was hard to
determine this due to the low
statistic available, but
theoretically how far can we go?



Single Pulse(Cluster #1) in depth - 2552 events

My attempt to identify 5/~ directly.

At 5 clusters,

Cluster# | no. of events
1.1 234
'Fﬁ y 1.2 796
single pul 1 . 3 290
1.4 557
1.5 675

pulse?
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nne

Based on Alpha list and /7 list,
Clusters#1.2 has the closest
averaged waveform to reference




Single Pulse(Cluster #1) in depth - most 3/~ like?

10 cluster=1.2, 796 events

10?7
3000 3500 4000 4500 5000

5500

no. of events 4000 keV < Energy[1] < 4500 keV, without TI208
cut = 179 events



A work in progress

» An algorithm that is capable to clusters waveform into
categories based on the similarity of their shape.

» Investigating how small the condensed latent space of encoder
can go (This study, the encoder reduce 4096 to 512).

> A better way to determine the number of cluster?
(Cross-validation/etc.)

> ...

End



Extra



Double pulse spectrum after PSDPara[1]< 1.5

counts

energy

2416 events



Energy spectrums of Single Pulses,
cluster#1.1, #1.3, #1.4, #1.5
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